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I.  INTRODUCTION 

Many calculations of transient solid propellant regression rates 
assume a quasi-steady dependence on pressure (and perhaps initial temp- 
erature) .  Constant volume bombs and constant pressure strand burner 
measurements are the usual source of the supporting data.  Experiments, 
however, have demonstrated that in a rapidly changing pressure field, 
the regression rate can deviate substantially from the quasi-steady rate 
for increasingly or decreasing-^ or oscillating pressure.  Because the 
immediate interest is in increasing pressures found in gun chambers, the 
body of theory and experiment for oscillating pressures will be largely 
ignored. 

As observed in Kuo's recent review, models which rely only on 
rate of change of pressure are valid only when the excursions are small 
enough for linear analysis.  For larger excursions from steady state, 
a thermal theory model has been frequently used wherein only the gas 
phase is assumed quasi-steady. For extreme excursions even this approxi- 
mation must be abandoned although estimates have been seriously proposed 
of the application limits of the quasi-steady gas. 

Nelson has shown that for a given gun pressurization history, 
calculated transient rates can vary widely with the model used.  Kooker 

2 
J.   Brulardj P.  Kuentzmann,  R.  Kling,   "Repqnse d'un Propergol Solide 
a un Echelon de Pression"i  La Reoherohe Aerospatiale,  5, 279-287  (1975). 

2 
S.  L.   Turk,  R.  A.   Battista3  K,   K.   Kuo,  L.   H.   Caveny,  and M.   Summevfield, 
"Dynamia Responses of Solid Rockets during Rapid Pressure CEange"3  J. 
Spacecraft & Rockets,  10,   137-142  (1973). 

2 
C.   F.   Yin and C.   E.   Hermance,   "Continous Measurement Transient Burning 
Rates of a Composite Propellant Undergoing Bepressurization"3 AIAA 
Paper 71-173  (1971). 

4 
C.   E.   Woolridge and G.   A.  Marxman,   "A Comparison Between Theoretical and 
Experimental Extinction Behavior of Composite Solid Propellants",  AIAA 
Paper 70-666  (1970). 

K.   K.   Kuo and G.  R.   Coates,   "Review of Dynamic Burning of Solid Propel- 
lants in Gun and Rocket Propulsion Systems",  Sixteenth  (International) 
Symposium on Combustion,   1177-1192  (1976). 

r? 

C.   VI.  Nelson,   "Response of Three Types of Transient Combustion Models 
to Gun Pressurization",  Combustion and Flame,   32,   317-319   (1978). 



and Nelson7 showed that three thermal theory models of the KTSS8 type 
give essentially the same response. 

Most of these calculations assumed (1) a quasi-steady gas phase 
with uniform heat release and (2) constant thermal properties of both 
solid and gas. The uniform gas phase assumption derived from a concept 
of a diffusion controlled flame of composite propellants not generally 
held applicable to homogeneous propellants with kinetically controlled 
gas phase reaction. Thermal properties of the solid have been found, 
in the few measurements made,9,10 to depend on temperature. The quasi- 
steady gas phase remains the only tractable approach for reasonable 
computing until methods like those of Kooker1! can be applied to solid 
propellant combustion and considerably simplified. Attempts at simpli- 
fied unsteady gas phase treatments tend to make critical but indefensible 
assumptions.12,13 

14 
Nelson, et al.  have shown that predicted pressure wave develop- 

ment in gun chambers is magnified by using a Zeldovich transient burning 
model to replace the quasi-steady regression. DDT calculations (e.g.. 

7 
B. E.  Kooker and C.   W.   Nelson,   "Numerical Solution of Three Solid 
Propellant Combustion Models During a Gun Pressure Transient"3  USA 
Ballistic Research Laboratory, Report 1953 (1977).     (See also ASME 
Journal of Heat Transfer,  in press).    (AD #A035250) 

o 

H.   Krier,  J.  S.   T'ien,  W.  A.  Sirignano and M.  Summerfield,   "Non-Steady 
Burning Phenomenon of Solid Propellants:    Theory and Experiments",  AIAA 
Journal,  6,   278-285  (1968). 

9 
J.  i?. Ward,   "Determination of the Beat Capacities of Gun Propellants 
by Differential Scanning Calorimetry", Analytical Calorimetry,  4, 
143-153   (1977). - 

10 
M.  L.   Cohen, M. Tmber    "Variation of the Thermal Condustivity of Solid 
Propellants in an Acoustic Field",  AIAA Journal 5,   1295-1299   (1967). 

11 
D.   ff. Kooker,   "Numerical Predictions for Laminar Flame Propagation in 
Confined Ozone/Oxygen Mixtures:    Influence of Initial Temperature and 
Pressure",  AIAA Paper 79-0292,  New Orleans   (1979). 

12 
C. W.  Nelson,   "Another Comment on the Transient Burning Rate Model of 
Suhas and Bose",   Combustion and Flame,  in press. 

13 
H. K. Suhas and T. K. Bose, "A Mathematical Model to Predict Transient 
Burning Rate and Pressure Decay Rates for Extinction of Composite Pro- 
pellants",   Combustion and Flame,   28,   145-153  (1977). 

14n 
C.   W.   Nelson,  P.   S.   Gough,  and F.   W.  Robbins,   "Ignition Transients in 
Flamespreading Calculations",  AIAA Paper 79-0166,  New Orleans   (1979). 



Beckstead, et al. ) where steep pressure fronts are well documented 
typically use a quasi-steady regression law. 

The purpose of this short report is to examine theoretically the 
effect of an assumption of variable thermal properties on the transient 
regression rates of solid propellants. 

II. THEORY 

Thermal theory models solve the energy equation in the solid, 

8T 3T      3   ..3T-. 
pC  9t  + rpc W = HCXW3   ' ^ 

7 
which in the nondimensional variables of Kooker and Nelson plus 

L = A/Xo (2) 

C = c/co (3) 

becomes 

3T+ R 9^- C 97f ^V- (4) 

Boundary conditions for the solid are: 

6 = 0 as n = -00 C5) 

|i= f[Ls, Cs, R. PCT)] at n = 0. 

The specific form of the surface boundary condition is set by the choice 
of gas phase model. 

The initial condition is one of steady state burning at an initial 
pressure.  In problems where transients seem likely to be important, 
the actual initial condition is a cold propellant. A complete calculation 
would include ignition and the transition to self-sustaining combustion^ 

15 
M.   W.  Beakstead,  N.   L.  Peterson,  D.   T.  Pilaher, and B.  D.  Hopkins, 
"Conveative Combustion Modeling Applied to Deflagration to Detonation 
Transition of HMX",  Combustion and Flame Z0,   231-241   (1977). 



Unfortunately, since there is no useful model of the transition, the 
problem is avoided by assuming steady state combustion has already been 
achieved. 

At steady state, the temperature profile is given by the solution 
of the energy equation 

V ~ c ITT ^ (6) 

subject to boundary conditions 

9 = 0        as n -*■ -00 

e = i      at n = o. 

Note that without the temperature dependent properties, the initial 
condition would be the familiar 

e = en 

With variable properties, a numerical solution of Eq. (6) provides the 
initial condition. 

In contrast with the constant properties case where the initial 
value of the surface gradient is 

li= i 
3n 

the variable properties value is approximately 

|iS 0.65 

for the specific values of this problem.  It will in general vary from 
unity in the direction opposing the change in the thermal diffusivity. 

One simple treatment of the gas phase is to assume a uniform 
reaction rate as has been done by several models (e.g., KTSS8). With 
the reaction rate so specified, the gas phase energy equation can then 
be integrated to find the conduction term at the solid boundary. The 
Kooker-Zinnl6 model here yields the boundary condition 

16 
D.   E.   Kooker and B.   T.   Zinn,   "Nmeriaal Investigation of Nonlinear 
Axial Instabilities in Solid Rocket Motors",   USA Ballistic Research 
Laboratories Contract Report 141   (1974).   (AD #776954) 

10 



c     „„n 
^ = £ [H + (6 -1) (C - ^ )] + gl 9n  L ^   v s J ^   c JJ   RL 

0 

The constant Z is determined from the initial condition. H is the non- 
dimensional surface heat release. 

H = Q /c (T -T ) xs o^- so    oJ 

Another treatment is to ignore the gas phase details as is done in 
the Zeldovich approach wherein it is assumed that the functional form 
of the heat feedback is the same for any combination of regression rate 
and pressure. 

For constant properties, the heat feedback term is the transformed 
version of the Zeldovich boundary condition,6 

99. = R ffl       1      .  R 
9ri  L l s " a (T -T )  in R 

p  SO O
J 5 

For variable properties, the term is more complicated after considering 
that at steady state 

L — = R rs c(e)de 
9P     ' 

The essence of the Zeldovich treatment is to replace 9 with an equiva- 
lent 6eq to give the same regression rate-pressure relationship.  For a 
linear heat capacity dependence (C = CA + CB9), the surface gradient 
then becomes 

|i = R[C.(8 -e   ) + -I (e2-e2 ) 9ri L A^  s     eqJ 2   *•  s    eqJ ' 

where 

o 1 ,      R 
eq      a   (T    -T )   in R n        p^  s0    o' s 

11 



III.  MEASURED THERMAL PROPERTIES 
9 

Ward measured temperature dependence of heat capacity below the 
decomposition point for nitrocellulose and X14 propellant.  For the X14 
propellant the reported value was 

C = .118 + .66xl0"3 T(K) cal/gK 

over the temperature range 283-343 K. 

A difficulty enters here because the theory has assumed an inert 
solid at all temperatures. Reactions in the solid which prevent heat 
capacity measurement have been assumed to occur only in a collapsed zone 
at the surface. A simple solution is to extrapolate the measurements 
to the calculated temperature, however high. The alternative is a com- 
plete recasting of the model which would require knowledge of the 
chemical reactions in the solid. 

Cohen  measured the thermal conductivity of two double base pro- 
pellants.  For DQO propellant the value is 

A = 1.90xl0"5 + 2.46xl0_6 T(K) cal/cmsecK 

over the temperature range 267-317 K.  Again, the simplicity of an extra- 
polation outweighs the more difficult alternatives. 

IV.  RESULTS 

With the variable properties, transients are less pronounced than 
with constant, low temperature properties.  Figure 1 shows the effect of 
property variation on a calculation reported by Kooker and Nelson7 for 
a distributed flame.  It shows that transient response is muted by the 
variable properties.  Pressure was rising monotonically from 7 to 20 MPa 
during the transient as taken from the records of a 105 mm tank gun 
which reaches 400 MPa in about 3 ms.  In Figure 1, CONCOLD means con- 
stant properties evaluated at the cold boundary; CONAVG means constant 
properties evaluated at an interim temperature (460 K); VAR means the 
variable properties. 

12 



3i- 

CON COLD 

CON AVG 
2- 

0 

KOOKER MODEL 
Qs = 82 cal/g 

1 
2        3        4        5 

PRESSURE  (ND) 

Figure 1.    Effect of Variable Properties 

J 

The effect of pressurization rate on the Kooker model is shown in 
Figure 2.  In the 105 mm tank gun, the pressurization rate at the 7-20 
MPa levels is about 7000 MPa/sec.  The pressurization rate of a grain 
during the flamespreading process in a 155 mm howitzer is calculated to 
be about 14,000 MPa/sec at the middle of the bed and about 40,000 MPa/sec 
at the stagnation of bed against the projectile base.  If the Kooker 
flame assumptions applied, these results suggest that burning rate 
excursions would extend to pressures over 100 MPa. With the high 
pressurization rates of DDT, such an effect cannot be ignored on the 
assumption that the excursions apply only at low pressures. 

15 



70,000 MPa/s 

(gun) 7000 MPa/s 

700 MPa/s 

Figure 2. Effect of Pressurization Rate 

Predictions of the Zeldovich model are shown in Figure 3 which 
shows the effect of varying temperature sensitivity and pressurization 
rate. Of note is the slow return of the relative rate toward unity. 
For the gun pressurization, an excursion of over 50% is predicted to 
survive for the whole ballistic cycle. With a steep pressurization 
rate (7x105 MPa/sec) the excursion is rapid on the time scale of a gun 
but does not peak until 50 MPa.  Notable here is the transition from a 
lag (25% of quasi-steady rate) to an overshoot of 150% in the entire 
calculated cycle to a non-dimensional pressure of 173 (about 1.2 Kbars) 
For DDT analysis, these results say that a quasi-steady assumption 
ignores the predicted highly transient behavior. 

Surface heat release is a critical parameter in the Kooker type 
model; the non-dimensional heat release is 

Q /c  (T -T ) xs o ^ s  oJ 

o 

The effect of varying H is shown in Figure 4. The response is similar 
to that of the constant properties solutions of Kooker and Nelson.7 

14 



Experimental values for Qs are not well known; Kubota, et al.17 have 
suggested experimental values which vary with regression rate. 

3r- 700,000 MPa/s 
/ (P»50) 

a-p «.0046 

7000 MPa/s 
CTp = .003 

ZELDOVICH MODEL 

J 
.10 .15 

TIME   (ND) 

Zeldovich Model  Results 

.20 .25 

0 

Figure 4 

H     Qs (cal/g) 
0.7 72 
0.8 82 
0.9 92 

KOOKER MODEL 

0.1 0.2 
TIME   (ND) 

0.3 

Effect of Surface Heat Release 
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The model's response to a step doubling of pressure from 1 to 2 is 
shown in Figure 5. Such a pressure transient represents a limit of a 
steep pressure wave. The step used here has no immediate practical 
value; it is intended only as a test of the regression rate response 
lag. 

STEP PRESSURE   RESPONSE 

3r- 

0t .1 

.28ms 

.2 .3 
TIME (ND) 

.4 .5 

Figure 5. Effect of Pressure Step Change 

CONCLUSIONS 

1. The regression rate overshoots predicted with constant initial 
temperature thermal properties are muted by the substitution of variable 
thermal properties. 

2. Higher pressurization rates lead to higher transients and higher 
pressures at the peak overshoot. 

3. No simple correlation of regression rate excursion with pres- 
surization rate. 

4. Predicted excursions are dependent on assumed surface heat 
release. 

5. Regression rate excursions of two times the quasi-steady rate 
are predicted. 

16 
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LIST OF SYMBOLS 

C heat capacity (nd) c/c 

co reference heat capacity 

c gas phase heat capacity 

H surface heat release (nd) 

CA 
r constants in heat capacity temperature dependence 
B 

L conductivity (nd) X/X 

P pressure (nd) P/P 
o 

P initial pressure 

r regression rate 

R regression rate (nd) r/r 

r steady state regression rate 

r initial regression rate 

T   temperature 

T   reference temperature 

T   reference surface temperature 

a   reference thermal diffusivity 

n   distance (nd) xr /a 
o    o 

X thermal conductivity 

X   reference thermal conductivity 

p   density 

9   temperature (nd) (T-T )/T -T ) 
oJ     so oJ 

a        temperature sensitivity of regression rate 
2 

T   time (nd)  t r /a 
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